A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors
نویسندگان
چکیده
Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC) power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2-3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors.
منابع مشابه
An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کاملDesign, Fabrication and Characterization of Wearable Energy Harvester Using Polyvinylidene Fluoride
This paper describes the design, fabrication and characterization of Polyvinylidene Fluoride (PVDF) based piezoelectric energy harvester that scavenges energy from the movement of human limbs. It investigates the effect of a piezolaminated curvilinear shell structure on the power density of a wearable energy harvester through Finite Element Method (FEM) and experimental results. Curvilinear She...
متن کاملCharacterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications
Wearable medical and electronic devices demand a similarly wearable electrical power supply. Humanbased piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harves...
متن کاملWE-Harvest: A Wearable Piezoelectric-Electromagnetic Energy Harvester
Wearable electronics require a sustainable electrical power supply to operate. Energy harvesting techniques can be used to convert available nonelectrical energy sources into electrical energy. This paper presents WE-Harvest, a new wearable energy harvesting system that combines the piezoelectric and electromagnetic energy harvesters for wearable devices. Regular human body motions, such as mov...
متن کامل